Statistical Transfer Systems for French-English and German-English Machine Translation

نویسندگان

  • Greg Hanneman
  • Edmund Huber
  • Abhaya Agarwal
  • Vamshi Ambati
  • Alok Parlikar
  • Erik Peterson
  • Alon Lavie
چکیده

We apply the Stat-XFER statistical transfer machine translation framework to the task of translating from French and German into English. We introduce statistical methods within our framework that allow for the principled extraction of syntax-based transfer rules from parallel corpora given word alignments and constituency parses. Performance is evaluated on test sets from the 2007 WMT shared task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explorer Stanford University ' s Submissions to the WMT 2014 Translation

We describe Stanford’s participation in the French-English and English-German tracks of the 2014 Workshop on Statistical Machine Translation (WMT). Our systems used large feature sets, word classes, and an optional unconstrained language model. Among constrained systems, ours performed the best according to uncased BLEU: 36.0% for French-English and 20.9% for English-German.

متن کامل

Stanford University's Submissions to the WMT 2014 Translation Task

We describe Stanford’s participation in the French-English and English-German tracks of the 2014 Workshop on Statistical Machine Translation (WMT). Our systems used large feature sets, word classes, and an optional unconstrained language model. Among constrained systems, ours performed the best according to uncased BLEU: 36.0% for French-English and 20.9% for English-German.

متن کامل

Stanford University ' s Submissions to the WMT 2014 Translation

We describe Stanford’s participation in the French-English and English-German tracks of the 2014 Workshop on Statistical Machine Translation (WMT). Our systems used large feature sets, word classes, and an optional unconstrained language model. Among constrained systems, ours performed the best according to uncased BLEU: 36.0% for French-English and 20.9% for English-German.

متن کامل

LIMSI's Statistical Translation Systems for WMT'10

This paper describes our Statistical Machine Translation systems for the WMT10 evaluation, where LIMSI participated for two language pairs (French-English and German-English, in both directions). For German-English, we concentrated on normalizing the German side through a proper preprocessing, aimed at reducing the lexical redundancy and at splitting complex compounds. For French-English, we st...

متن کامل

The RWTH Machine Translation System for WMT 2009

RWTH participated in the shared translation task of the Fourth Workshop of Statistical Machine Translation (WMT 2009) with the German-English, French-English and Spanish-English pair in each translation direction. The submissions were generated using a phrase-based and a hierarchical statistical machine translation systems with appropriate morpho-syntactic enhancements. POS-based reorderings of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008